Picard Groups of Topologically Stable Poisson Structures

نویسنده

  • DIMITRI SHLYAKHTENKO
چکیده

We compute the group of Morita self-equivalences (the Picard group) of a Poisson structure on an orientable surface, under the assumption that the degeneracies of the Poisson tensor are linear. The answer involves mapping class groups of surfaces, i.e., groups of isotopy classes of diffeomorphisms. We also show that the Picard group of these structures coincides with the group of outer Poisson automorphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bimodule deformations, Picard groups and contravariant connections

We study deformations of invertible bimodules and the behavior of Picard groups under deformation quantization. While K0-groups are known to be stable under formal deformations of algebras, Picard groups may change drastically. We identify the semiclassical limit of bimodule deformations as contravariant connections and study the associated deformation quantization problem. Our main focus is on...

متن کامل

3 A pr 2 00 3 Picard groups in Poisson geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

Dirac submanifolds and Poisson involutions

Dirac submanifolds are a natural generalization in the Poisson category for symplectic submanifolds of a symplectic manifold. In a certain sense they correspond to symplectic subgroupoids of the symplectic groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable locus of a Poisson involution. In this paper, we provide a general study for these submanifolds i...

متن کامل

J un 2 00 3 Picard groups in Poisson geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

ررسی شرط پیکارد در مسأله انتقال به سمت پائین در تعیین ژئوئید بدون استفاده از روش استوکس

The problem of downward continuation of the gravity field from the Earth’s surface to the reference ellipsoid arises from the fact that the solution to the boundary value problem for geoid determination without applying Stokes formula is sought in terms of the disturbing potential on the ellipsoid but the gravity observations are only available on the Earth’s surface. Downward continuation is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004